یک روش چندبعدی برای پیشنهاد دهنده های آگاه از زمینه در تجارت سیار |
سیستمهای پیشنهاددهنده در تجارت سیار از جمله موضوعات پراهمیت سالهای اخیر بودهاند که با ظهور تکنولوژیهای بیسیم و تسهیل حرکت تجارت الکترونیکی از محیطهای سیمی به سوی بیسیم مورد توجه قرارگرفتهاند. تجارت سیار بهمعنای انجام فعالیتهای تجارتالکترونیک از طریق محیطهای بیسیم، بهطورخاص اینترنت بیسیم، و وسایل دستی سیار میباشد که با پیدایش تکنولوژی بیسیم در عرصه اینترنت و استفاده روزافزون از وسایل سیار توجه به آن رو به افزایش است[1,2]. به کاربردهای تجارت سیار دو خصوصیت ویژه تحرک[1] و دسترسی وسیع[2] نسبت دادهشدهاست[1,3] که اولین خصوصیت بر امکان از بین رفتن محدودیتهای مکانی و دومین خصوصیت بر امکان از بین رفتن محدودیتهای زمانی در استفاده کاربران از خدمات این نوع کاربردها تاکید دارد[1,3,4,5]. اینکه کاربران برای انجام فعالیت هایی چون بانکداری الکترونیکی یا خرید الکترونیکی محصولات، قادر به جایگزینی وسایلی چون تلفنهای سیار و همراههای شخصی دیجیتال (پی.دی.اِی)[3] بهجای کامپیوترهای شخصی باشند، تسهیلات زیادی را برای آنها و فرصتهای جدیدی را نیز برای کسب وکارها فراهمخواهدکرد و لزوم توجه به این عرصه را برای محققان نمایان میسازد[1,3].
اما پیادهسازی سیستمهای پیشنهاددهنده در محیطهای سیار بدون درنظرگرفتن پارامترهای تاثیرگذار در این محیط چندان مناسبنخواهدبود. مجموعه این پارامترها، اطلاعات زمینه را تشکیل میدهند [6].
(1-1) |
که در آن Ratings، مجموعه مرتبی مانند اعداد صحیح غیرمنفی یا مجموعه اعداد حقیقی در بازهای معین میباشد.
در سیستمهای پیشنهاددهنده مقادیر u معمولاً فقط بر روی زیر مجموعهای از دامنه C×S تعریفشدهاست و نه بر تمام آن و قسمت های نامشخص این دامنه را باید با استفاده از دادههای موجود بهصورت تخمینی مشخص نمود. هدف نهایی سیستمهای توصیهکننده با ارائه پیشنهاد اقلام با بالاترین امتیازات تخمینی به کاربران محقق میشود بهطوریکه برای هر کاربر ، اقلام با حداکثر میزان سودمندی انتخاب و معرفی میگردد[7].
تا به امروز روشهای پیشنهاددهی زیادی ارائه شدهاست که این روشها و متدولوژیها در دستهبندیهای زیر قرار میگیرند[7,9,10]:
- مبتنی بر محتوا[4] : در این گروه از روشها، عمل پیشنهاددهی با استفاده از یافتن اقلامی انجام میگیرد که بیشترین تشابه را با اقلامی داشته باشند که درگذشته موردعلاقه کاربر بودهاند. به عبارت دیگر u(c,s)، سودمندی کالای s برای کاربر c، بر اساس کلیه مقادیر موجود u(c,si) هایی که si مشابه به s بوده و si جزء کالاهای مورد علاقه کاربر هستند، برآورد میشود.
- فیلترسازی مشارکتی : در این گروه از روشها، عمل پیشنهاددهی با استفاده از یافتن اقلامی انجام میگیرد که مورد علاقه کاربران با سلایق مشابه کاربر بودهاند. کاربران با سلایق مشابه یعنی کاربرانی که اقلام یکسانی را امتیازدهی مشابه کرده باشند. بهعبارت دیگر u (c, s) بر اساس مقادیر موجودu(cj ,s) بدست میآید که cj کاربران مشابه با c میباشند.
- مدل ترکیبی[5]: روشهایی که دو روش مبتنیبرمحتوا و فیلترسازی مشارکتی را ترکیب میکنند و به این صورت از مزایای هر دو روش در جهت شناسایی و معرفی کالاها بهره میگیرند.
در نگاهی دیگر روشهای پیشنهاددهی، اعم از مبتنی بر محتوا و فیلترسازی مشارکتی به دو دسته روشهای مبتنی بر حافظه[6]و مبتنی بر مدل[7] تقسیم میشوند. درمقایسه با الگوریتمهای مبتنی بر حافظه، الگوریتمهای مبتنی بر مدل، با استفاده از روشهای یادگیری ماشین[8] مدلی را با استفاده از مجموعه امتیازات موجود ایجاد کرده و از آن بهمنظور پیشگویی امتیازات استفاده میکنند[7,10,11].
1-2 موضوع تحقیق
1-3 پیشینه تحقیق
سیستمهای پیشنهاددهنده همواره از جمله موضوعات پر اهمیت در حوزه تجارت الکترونیک بودهاست. سیستمهای پیشنهاددهنده سیار
خرید متن کامل این پایان نامه در سایت nefo.ir
آگاه از زمینه در آغاز راه هستند. دسته مهمی از سیستمهای آگاه از زمینه را سیستمهای آگاه از مکان تشکیل میدهند. یانگ، چنگ، و دایا[12]، یک سیستم پیشنهاددهنده آگاه از مکان برای محیطهای سیار ارائهدادهاند که هدف آن توصیه وبسایت فروشندگان با در نظرگرفتن علایق و پیشفرضهای مشتری و همچنین فاصله مکانی وی با مکان فیزیکی مشخصشده در وبسایتها میباشد. در روش مزبور، دو فاکتور فوق بهطور جداگانه محاسبه شده و سپس بر اساس ترکیبی از آنها به پیشنهاد وبسایتها پرداخته میشود. یکی دیگر از این نوع سیستمها پروکسیمو[13] است که یک سیستم پیشنهاددهنده آگاه از مکان برای محیطهای داخلی چون موزهها و گالریها است. این سیستم بر اساس علایق و پیشفرضهای کاربر به پیشنهاد اقلام پرداخته و مکان اقلام را بر روی نقشهای بر روی وسیله همراه کاربر نمایش میدهد.
استفاده از سایر اطلاعات زمینهای علاوهبر مکان نیز مورد توجه توسعهدهندگان این نوع سیستمها قرارگرفتهاست. پخش موسیقی یکی از حوزههای کاربردی پرمصرف در میان کاربران سیار میباشد و به همین دلیل استفاده از پیشنهاددهندههای آگاه از زمینه در این حوزه مورد توجه قرارگرفته است. از آنجایی که تاثیر موسیقی بر روح و جسم انسان ثابت شدهاست، انتخاب موسیقی با توجه به شرایط میتواند وضعیت دوستداشتنیتری را فراهمکند و افراد را در انجام فعالیتهایشان یاری رساند. مثلاً موسیقی میتواند کارایی فرد را در حال انجام تمرینات فیزیکی بهبود بخشد، اضطراب را کاهش دهد و میزان یادگیری را بهبود بخشد. [14] یکی از تحقیقاتی است که در این حوزه ارائهشدهاست. در این تحقیق علاوهبر بررسی روشهای فیلترسازی مبتنیبر زمینه و مرور پیشنهاددهندههای سیار آگاه از زمینه موسیقی، پیشنهاددهنده سیار آگاه از زمینه AndroMedia ارائه شدهاست. پیشنهادات با توجه به زمینه جاری کاربر که با استفاده از حسگرهای بلوتوث در سمت برنامه مشتری بدست میآیند و همچنین سلایق کاربر تهیه میشوند. همچنین در مرجع [15] نیز پیشنهاددهی آگاه از زمینه موسیقی در محیطهای سیار مورد بررسی قرارگرفتهاست. در تحقیق پارک، یو و چو[16] نیز یک سیستم آگاه از زمینه موسیقی با استفاده از شبکههای بیزین فازی و تئوری سودمندی ارائهشدهاست. فرایند پیشنهاددهی تحلیل شده و سودمندی آن مورد ارزیابی قرارگرفتهاست.
گردشگری نیز یکی از حوزههای جذاب برای پیادهسازی پیشنهاددهندههای سیار آگاه از زمینه میباشد. امروزه گردشگران انتظار دارند که دسترسی شخصی به اطلاعات گردشگری در هر زمان، هر مکان و در هر شرایطی را داشتهباشند. راهنماهای گردشگری سیار، چنین اطلاعاتی را در اختیار کاربران قرار میدهند. در مرجع [17] خلاصهای از کارهای انجامشده در زمینه راهنماهای گردشگری سیار تحت وب انجام گرفتهاست. همچنین در مرجع[18] تاثیر آگاهی از زمینه در سیستمهای اطلاعاتی گردشگری سیار مورد بررسی قرار گرفتهاست. در [19] نیز یک کاربرد توریستی سیار با نام COMPASS ارائهشدهاست. در این تحقیق به بررسی ترکیب آگاهی از زمینه با سیستمهای پیشنهاددهنده پرداخته شدهاست. پارامترهای زمینهای این تحقیق شامل زمان و مکان میباشند. این سیستم خدمات خود را با نیازهای کاربر که بر اساس علایق و زمینه جاری وی مشخص میشود، تطبیق میدهد.
در [20] نیز یک سیستم پیشنهاددهنده تصاویر با استفاده از یک روش دادهکاوی که ترکیبی از روشهای مبتنیبرمحتوا و مبتنیبر اطلاعات زمینه میباشد ارائهشدهاست. اطلاعات زمینه استفادهشده در این تحقیق شامل زمان و مکان هستند. لی، ونگ، جنگ و دای[21]، یک سیستم توصیهکننده آگاه از زمینه برای کاربردهای تجارت سیار ارائهدادهاند. در این تحقیق از مدل چندبعدی موجود در سیستمهای OLAP برای نمایش فضای توصیهگری و از روش مبتنی بر کاهش فضا بهمنظور کاهش فضای توصیهگری به فضای دوبعدی و انجام عملیات توصیهگری در فضای مزبور استفادهکردهاند.
استفاده از آنتولوژی و وب معنایی در سیستمهای پیشنهاددهنده سیار آگاه از زمینه نیز در تحقیقات بسیاری مورد توجهقرارگرفتهاست[22,23,24]. تکنولوژیهای وب معنایی، دسترسی هوشمند و کارا به اطلاعات را بهبود بخشیدهاند. از آنتولوژی میتوان برای مدلسازی زمینه و همچنین برای مدلسازی ارتباط زمینه با سایر مجموعهدادهها استفادهنمود. در تحقیق حاضر، یک روش جدید پیشنهاددهی آگاه از زمینه در تجارت سیار ارائهشدهاست.
1-4 اهمیت و ارزش تحقیق
استفاده از سیستمهای پیشنهاددهنده آگاه از زمینه در تجارت سیار یک فرصت است. با توجه به افزایش کمی کاربران وسایل سیار درکشور و گسترش کمی و کیفی زیربنایی تجهیزات سیار، آشنایی با مفاهیم، اصول و کاربردهای تجارت سیار و جهتگیری در جهت ارتقاء مفاهیم کاربردی و بومیسازی آنها ، فرصتی استثنایی را در اختیار صاحبان صنایع و کسب و کارها و کاربران سیار قرار میدهد و توجه به این جنبه از پیشرفت در مراکز علمی و تحقیقاتی امری ضروری و اجتنابناپذیر بهنظر میرسد.
فرم در حال بارگذاری ...
[شنبه 1400-05-16] [ 05:44:00 ب.ظ ]
|