سیستم­های پیشنهاد­دهنده در تجارت سیار از جمله موضوعات پر­اهمیت سال­های اخیر بوده­اند که با ظهور تکنولوژی­های بی­سیم و تسهیل حرکت تجارت الکترونیکی از محیط­های سیمی به سوی بی­سیم­ مورد توجه قرار­گرفته­اند. تجارت سیار به­معنای انجام فعالیت­های تجارت­الکترونیک از طریق محیط­های بی­سیم، به­طورخاص اینترنت بی­سیم، و وسایل دستی سیار می­باشد که با­ پیدایش تکنولوژی بی­سیم در عرصه اینترنت و استفاده روزافزون از وسایل سیار توجه به آن رو به افزایش است[1,2]. به کاربرد­های تجارت سیار دو خصوصیت ویژه تحرک[1] و دسترسی وسیع[2] نسبت داده­شده­است[1,3] که اولین خصوصیت بر امکان از بین رفتن محدودیت­های مکانی و دومین خصوصیت بر امکان از بین رفتن محدودیت­های زمانی در استفاده کاربران از خدمات این نوع کاربرد­ها تاکید دارد[1,3,4,5]. این­که کاربران برای انجام فعالیت هایی چون بانکداری الکترونیکی یا خرید الکترونیکی محصولات، قادر به جایگزینی وسایلی چون تلفن­های سیار و ­همراه­های شخصی دیجیتال (پی.دی.اِی)[3]  به­جای کامپیوتر­های شخصی باشند،  تسهیلات زیادی را برای آنها و فرصت­های جدیدی را نیز  برای کسب وکار­ها فراهم­­­خواهد­کرد و لزوم توجه به این عرصه را برای محققان نمایان می­سازد[1,3].

 

 

 

اما پیاده­سازی سیستم­های پیشنهاد­دهنده در محیط­های سیار بدون در­نظر­گرفتن پارامتر­های تاثیر­گذار در این محیط چندان مناسب­نخواهد­بود. مجموعه این پارامتر­ها، اطلاعات زمینه را تشکیل می­دهند [6].

 

 

 

(1-1)  

که در آن Ratings، مجموعه مرتبی مانند اعداد صحیح غیر­منفی یا مجموعه اعداد حقیقی در بازه­ای معین می­باشد.

 

در سیستم­های پیشنهاد­دهنده مقادیر u معمولاً فقط بر روی زیر مجموعه­ای از دامنه C×S تعریف­شده­است و نه بر تمام آن و قسمت های نامشخص این دامنه را باید با ­استفاده از داده­های موجود به­صورت تخمینی مشخص نمود. هدف نهایی سیستم­های توصیه­کننده با ارائه پیشنهاد  اقلام با بالاترین امتیازات تخمینی به کاربران محقق می­شود به­طوریکه برای هر کاربر ، اقلام  با حداکثر میزان سودمندی انتخاب و معرفی می­گردد[7].

 

تا به امروز روش­های پیشنهاد­دهی زیادی ارائه شده­است که این روش­ها و متدولوژی­ها در دسته­بندی­های زیر قرار می­گیرند[7,9,10]:

 

    • مبتنی بر محتوا[4] : در این گروه از روش­ها، عمل پیشنهاد­دهی با استفاده از یافتن اقلامی انجام می­گیرد که بیشترین تشابه را با اقلامی داشته باشند که در­گذشته مورد­علاقه کاربر بوده­اند. به عبارت دیگر u(c,s)، سودمندی کالای s برای کاربر c، بر اساس کلیه مقادیر موجود u(c,si) هایی که si مشابه به s بوده و si جزء کالاهای مورد علاقه کاربر هستند،­ برآورد می­شود.

 

    • فیلترسازی مشارکتی : در این گروه از روش­ها، عمل پیشنهاد­دهی با استفاده از یافتن اقلامی انجام می­گیرد که مورد علاقه کاربران با سلایق مشابه کاربر بوده­اند. کاربران با سلایق مشابه یعنی کاربرانی که اقلام یکسانی را امتیاز­دهی مشابه کرده باشند. به­عبارت دیگر u (c, s) بر اساس مقادیر موجودu(c,s) بدست می­آید که  cj  کاربران مشابه با c می­باشند.

 

  • مدل ترکیبی[5]: روش­هایی که دو روش مبتنی­بر­محتوا و فیلتر­سازی مشارکتی را ترکیب می­کنند و به این صورت از مزایای هر دو روش در جهت شناسایی و معرفی کالاها بهره می­گیرند.

در نگاهی دیگر روش­های پیشنهاد­دهی، اعم از مبتنی بر محتوا و فیلتر­سازی مشارکتی به دو دسته روش­های مبتنی بر حافظه[6]و مبتنی بر مدل[7] تقسیم می­شوند. در­مقایسه با الگوریتم­های مبتنی بر حافظه، الگوریتم­های مبتنی بر مدل، با استفاده از روش­های یادگیری ماشین[8] مدلی را با استفاده از مجموعه امتیازات موجود ایجاد کرده و از آن به­منظور پیشگویی امتیازات استفاده می­کنند[7,10,11].

 

1-2 موضوع تحقیق

 

1-3 پیشینه تحقیق

 

سیستم­های پیشنهاد­دهنده همواره از جمله موضوعات پر اهمیت در حوزه تجارت الکترونیک بوده­است. سیستم­های پیشنهاد­دهنده سیار

 

خرید متن کامل این پایان نامه در سایت nefo.ir

 آگاه از زمینه در آغاز راه هستند. دسته مهمی از سیستم­های آگاه از زمینه را  سیستم­های آگاه از مکان تشکیل می­دهند. یانگ، چنگ، و دایا[12]، یک سیستم پیشنهاد­دهنده آگاه از مکان برای محیط­های سیار ارائه­داده­اند که هدف آن توصیه وب­سایت فروشندگان با در نظر­گرفتن علایق و پیش­فرض­های مشتری و همچنین فاصله مکانی وی با مکان فیزیکی مشخص­شده در وب­سایت­ها می­باشد. در روش مزبور، دو فاکتور فوق به­طور جداگانه محاسبه­ شده و سپس بر اساس ترکیبی از آنها به پیشنهاد وب­سایت­ها پرداخته می­شود. یکی دیگر از این نوع سیستم­ها پروکسیمو[13] است که یک سیستم پیشنهاد­دهنده آگاه از مکان برای محیط­های داخلی چون موزه­ها و گالری­ها است. این سیستم بر اساس علایق و پیش­فرض­های کاربر به پیشنهاد اقلام پرداخته و مکان اقلام را بر روی نقشه­ای بر روی وسیله همراه کاربر نمایش می­دهد.

 

استفاده از سایر اطلاعات زمینه­ای علاوه­بر مکان نیز مورد توجه توسعه­دهندگان این نوع سیستم­ها قرار­گرفته­است. پخش موسیقی یکی از حوزه­های کاربردی پر­مصرف در میان کاربران سیار می­باشد و به همین دلیل استفاده از پیشنهاد­دهنده­های آگاه از زمینه در این حوزه مورد توجه قرار­گرفته است. از آنجایی که تاثیر موسیقی بر روح و جسم انسان ثابت شده­است، انتخاب موسیقی با توجه به شرایط می­تواند وضعیت دوست­داشتنی­تری را فراهم­کند و افراد را در انجام فعالیت­هایشان یاری رساند. مثلاً موسیقی می­تواند کارایی فرد را در حال انجام تمرینات فیزیکی بهبود بخشد، اضطراب را کاهش دهد و میزان یادگیری را بهبود بخشد. [14] یکی از تحقیقاتی است که در این حوزه ارائه­شده­است. در این تحقیق علاوه­بر بررسی روش­های فیلتر­سازی مبتنی­بر زمینه و مرور پیشنهاد­دهنده­های سیار آگاه از زمینه موسیقی، پیشنهاد­دهنده سیار آگاه از زمینه AndroMedia  ارائه شده­است. پیشنهادات با توجه به زمینه جاری کاربر که با استفاده از حسگر­های بلوتوث در سمت برنامه مشتری بدست می­آیند و همچنین سلایق کاربر تهیه می­شوند. همچنین در مرجع [15]  نیز پیشنهاد­دهی آگاه از زمینه موسیقی در محیط­های سیار مورد بررسی قرار­گرفته­است. در تحقیق پارک، یو و چو[16]  نیز یک سیستم آگاه از زمینه موسیقی با استفاده از شبکه­های بیزین فازی و تئوری سودمندی ارائه­شده­است. فرایند پیشنهاد­دهی تحلیل شده و سودمندی آن مورد ارزیابی قرار­گرفته­است.

 

گردشگری نیز یکی از حوزه­های جذاب برای پیاده­سازی پیشنهاد­دهنده­های سیار آگاه از زمینه می­باشد. امروزه گردشگران انتظار دارند که دسترسی شخصی به اطلاعات گردشگری در هر زمان، هر مکان و در هر شرایطی را داشته­باشند. راهنما­های گردشگری سیار، چنین اطلاعاتی را در اختیار کاربران قرار می­دهند. در مرجع [17] خلاصه­ای از کار­های انجام­شده در زمینه راهنماهای گردشگری سیار تحت وب انجام گرفته­است. همچنین در مرجع[18]   تاثیر آگاهی از زمینه در سیستم­های اطلاعاتی گردشگری سیار مورد بررسی قرار گرفته­است. در [19]  نیز یک کاربرد توریستی سیار با نام COMPASS ارائه­شده­است. در این تحقیق به بررسی ترکیب آگاهی از زمینه با سیستم­های پیشنهاد­دهنده پرداخته شده­است. پارامتر­های زمینه­ای این تحقیق شامل زمان و مکان می­باشند. این سیستم خدمات خود را با نیاز­های کاربر که بر اساس علایق و زمینه جاری وی مشخص می­شود، تطبیق می­دهد.

 تصویر درباره گردشگری

در [20] نیز یک سیستم پیشنهاد­دهنده تصاویر با استفاده از یک روش داده­کاوی که ترکیبی از روش­های مبتنی­بر­محتوا و مبتنی­بر اطلاعات زمینه می­باشد ارائه­شده­است. اطلاعات زمینه استفاده­شده در این تحقیق شامل زمان و مکان هستند. لی، ونگ، جنگ و دای[21]، یک سیستم توصیه­کننده آگاه از زمینه برای کاربرد­های تجارت سیار ارائه­داده­اند. در این تحقیق از مدل چند­بعدی موجود در سیستم­های OLAP برای نمایش فضای توصیه­گری و از روش مبتنی بر کاهش فضا به­منظور کاهش فضای توصیه­گری به فضای دو­بعدی و انجام عملیات توصیه­گری در فضای مزبور استفاده­کرده­اند.

 

استفاده از آنتولوژی و وب معنایی در سیستم­های پیشنهاد­دهنده سیار آگاه از زمینه نیز در تحقیقات بسیاری مورد توجه­قرار­گرفته­است[22,23,24]. تکنولوژی­های وب معنایی، دسترسی هوشمند و کارا به اطلاعات را بهبود بخشیده­اند. از آنتولوژی می­توان برای مدل­سازی زمینه و همچنین برای مدل­سازی ارتباط زمینه با سایر مجموعه­داده­ها استفاده­نمود. در تحقیق حاضر، یک روش جدید پیشنهاد­دهی آگاه از زمینه در تجارت سیار ارائه­شده­است.

 

1-4 اهمیت و ارزش تحقیق

 

استفاده از سیستم­های پیشنهاد­دهنده آگاه از زمینه در تجارت سیار یک فرصت است. با توجه به افزایش کمی کاربران وسایل سیار درکشور و گسترش کمی و کیفی زیر­بنایی تجهیزات سیار، آشنایی با مفاهیم، اصول و کاربرد­های تجارت سیار و جهت­گیری در جهت ارتقاء مفاهیم کاربردی و بومی­سازی آنها ،  فرصتی استثنایی را در اختیار صاحبان صنایع و کسب و کار­ها و کاربران سیار قرار می­دهد و توجه به این جنبه از پیشرفت در مراکز علمی و تحقیقاتی امری ضروری و اجتناب­ناپذیر  به­نظر می­رسد.

موضوعات: بدون موضوع  لینک ثابت


فرم در حال بارگذاری ...