برآورد میانگین درنمونه گیری مضاعف برای طبقه بندی با استفاده ازاطلاعات کمکی چند … |
در حالت کلی برای نمونه گیری، دو روش نمونه گیری احتمالی و غیراحتمالی معرفی
می گردد. در نمونه گیری احتمالی که اولین بار توسط دمینگ ]7[ در سال 1950 مطرح شده است، هر واحد نمونه با احتمالی مشخص از جامعه استخراج می شود. کاربرد گسترده ی این روش امروزه به گونه ای است که این روش جایگزین نمونه گیری غیر احتمالی شده است.همچنین در بسیاری از نمونه گیری ها، در حین جمع آوری اطلاعات مربوط به متغیر مورد مطالعه و یا قبل از آن، ممکن است اطلاعاتی درباره متغیر یا متغیرهای دیگری که با متغیر مورد مطالعه همبستگی دارند موجود باشد که به این نوع اطلاعات، اطلاعات کمکی گفته می شود. از اطلاعات کمکی در مرحله ی برآوردیابی و در طرح نمونه گیری می توان استفاده کرد.
راه دست یابی به اطلاعات کمکی مفید از منابع متعدد می باشد و اغلب این اطلاعات در جوامع متناهی باعث افزایش دقت برآوردگرها می شود. الکلین ]18[ در سال 1958، رائو ]21[ در سال 1967، سینگ ]37[ در سال 1967، جان ]13[ در سال 1969، سریواستاوا ]40[ در سال 1971 و ویشواکارما و همکاران ]49[ در سال 2012 در مطالعات خود از اطلاعات کمکی به طور گسترده استفاده کرده اند.
در این فصل، در بخش (1-2) به بیان تعاریف و مفاهیم پایه ای در نمونه گیری که شامل جامعه متناهی، نمونه، طرح نمونه گیری و… است، پرداخته و سپس در بخش (1-3) انواع
طرح های نمونه گیری را تعریف می کنیم.
1-2 تعاریف و مفاهیم پایه ای
در مباحث نمونه گیری داشتن تعاریف دقیق و درست از مفاهیمی هم چون جامعه، نمونه، طرح نمونه گیری و… از ضروری می باشد. از این رو در این فصل به بیان تعاریف پایه ای و برخی نماد ها که در فصل های بعدی رساله مورد استفاده قرار خواهند گرفت، می پردازیم. نماد
خرید متن کامل این پایان نامه در سایت nefo.ir
ها به صورتی در نظر گرفته شده که در اغلب متون نمونه گیری مورد استفاده قرار گرفته است. عمده مطالب این بخش مبتنی بر مراجع کاکران ]4[ و عمیدی ]52[ است.
جامعه ی متناهی : یک جامعه ی متناهی از مجموعه ای مشتمل بر تعداد متناهی عناصر متمایز تشکیل شده است. مقدارN ، اندازه ی جامعه نامیده می شود. یک جامعه ی متناهی U را به صورت زیر نمایش می دهیم:
از آنجا كه یك توزیع احتمال بر روی است، داریم:
- ، برای هر
نمونه : عناصری از جامعه كه مشخصات آنها اندازهگیری میشود، تشكیل یك نمونه میدهند. در واقع یك نمونه، زیرمجموعهای از جامعة U است كه طبق برنامة خاصی به دست میآید. این زیرمجموعه به طور معمول با s نمایش داده شده و تعداد عناصر نمونه s است. در بسیاری از مواقع نمونههایی را در نظر میگیریم كه با استفاده از یك طرح نمونهگیری احتمالی تحقق مییابند. دو تعریف برای اصطلاح نمونه وجود دارد كه در اكثر مواقع مورد استفاده قرار میگیرند:
[1] Probability Sampling
[2] Deming, W.E.
[3] Olkin
[4] Rao and Madholkar
[5] Singh
[6] John
[7] Srivastava
[8] Vishwakarma et. al.
فرم در حال بارگذاری ...
[یکشنبه 1400-05-17] [ 12:00:00 ق.ظ ]
|