مدلسازی و تحلیل سازهای بال هواپیمای تجاری Structural Modeling and Analysis of … |
. 127
7-2- نتیجه گیری.. 127
127
128
7-3- ارائه پیشنهاد. 128
فهرست شکلها
شکل2-1: اجزای سازنده بال.. 9
شکل2-2: محل نصب و شکل بال.. 11
شکل2-3: انواع هواپیما از جهت محل عمودی نصب بال.. 12
شکل2-4: نامگذاری اجزای بال.. 12
شکل2-5: اجزای تشکیل دهنده تیرک طولی.. 13
شکل2-6: انواع رایج تیرکهای طولی.. 14
شکل2-7: انواع بال بر اساس نسبت مخروطی.. 17
شکل2-8: زوایای دایهدرال و انهدرال.. 19
شکل2-9: اثر زاویه دایهدرال در پایداری عرضی.. 19
شکل2-10: سطوح کنترلی بال.. 20
شکل2-11: ایجاد غلتش در هواپیما به وسیله کاهنده برآ 23
شکل2-12: کاربرد مواد مختلف در نمونه هواپیمای مسافربری.. 27
شکل3-1: مجموعهای از بارهای وارده به هواپیما 31
شکل3-2: تعادل پروازی هواپیما 32
شکل3-3: نمونهای از بارهای وارده به بال هواپیما بر حسب مسیر پروازی.. 33
شکل3-4: نیروی وزن و برآی وارده به هواپیما 38
شکل3-5: اثرات توزیع سوخت بر خمش بال.. 40
شکل3-6: دیاگرام V-n برای هواپیمای مسافربری.. 41
شکل4-1: نمایش پاسخ فرکانسی مختلط.. 57
شکل 4-2: مسائل مطرح شده در آیروالاستیسیته. 61
شكل4-3: مدل تیر برای بال یک بعدی.. 63
شکل4-4: بررسی پایداری سیستم از روی پاسخهای آن.. 70
شکل4-5: مدل آیروالاستیک مقطع بال.. 72
شکل4-6: نمودار قسمتهای حقیقی و موهومی نسبت به سرعت 75
شکل4-7: اثر میرایی سازهای در یافتن سرعت فلاتر. 77
شکل 5-1: نقشه بال ایرباس320.. 83
شکل5-2: مکان قرارگیری تیرکهای طولی.. 84
شکل5-3: نمای شماتیک بال طراحی شده. 85
شکل5-4: چند حالت مختصات هندسی مخزن سوخت در بال در مقایسه با میزان آزادی بال از زیر بار گشتاور خمشی 85
شکل5-5: نمای کلی محل و قسمت بندی مخازن سوخت در هواپیمای ایرباس 320.. 87
شکل5-6: مراحل تحلیل یک مدل در نرم افزار Abaqus. 88
شکل5-7: توزیع نیروی برآ و توزیع بار ناشی از وزن سوخت… 90
شکل6-1: دو حالت متفاوت برای اعتبارسنجی مدل سازهای.. 94
شکل 6-2: جابجایی عمودی بال بر حسب تعداد گرهها 96
شکل6-3: کانتور تنش فون مایسز در تیرکهای طولی برای n=2.5.. 97
شکل6-4: کانتور تنش فون مایسز در دندههای عرضی بال برای n=2.5.. 97
شکل6-5: کانتور تنش در دندههای عرضی ریشه، شکستگی و نوک بال برای n=2.5.. 98
برای n=2.5.. 99
شکل6-7: کانتور تغییر مکان عمودی بال در حالتهای مختلف پروازی.. 100
شکل 6-8: تغییرات تنش در طول بال در تیرک طولی جلویی برای سه حالت پروازی مختلف… 101
شکل 6-9: تغییرات تنش در طول بال در تیرک طولی پشتی برای سه حالت پروازی مختلف… 101
شکل6-10: تغییرات ضریب اطمینان در طول بال در تیرک طولی جلویی.. 102
شکل6-11: تغییرات ضریب اطمینان در طول بال در تیرک طولی پشتی.. 102
شکل 6-12: نمایش قرارگیری دندههای عرضی بال با زاویههای نصب مختلف… 103
شکل 6-13: تاثیر حالتهای متفاوت دندههای عرضی بر توزیع تنش در ریشه بال.. 104
شکل 6-14: جابجایی نوک بال برای حالتهای متفاوت زاویه نصب دندههای عرضی.. 104
شکل 6-15: توزیع تنش فون مایسز در راستای طول بال در تیرک جلویی برای حالتهای متفاوت زاویه نصب دندههای عرضی 105
شکل 6-16: جابجایی بال در راستای طول بال.. 105
شکل 6-17: توزیع تنش در ریشه بال برای سطح مقطع متفاوت تیرکهای طولی.. 106
شکل 6-18: جابجایی نوک بال برای تیرکهای طولی با سطح مقطع متفاوت.. 107
خرید متن کامل این پایان نامه در سایت nefo.ir
. 107
شکل 6-20: توزیع تنش در طول بال در تیرک جلویی برای حالتهای متفاوت مصرف سوخت… 109
شکل 6-21: جابجایی در طول بال برای حالتهای متفاوت مصرف سوخت… 109
شکل6-22: همگرایی فرکانس اول بر حسب تعداد گرهها 110
شکل 6-23: مودهای فرکانسی بال.. 112
شكل6-24: نمایش محور الاستیک و سطح مقطع تیر مخروطی.. 113
(=10 λ) 114
(=10 λ) 115
(=10 λ ) 116
(=10 λ) 116
شكل6-29: مقایسه سرعت فلاتر برحسب زاویه عقبگرد برای نسبتهای متفاوت λ و TR=0.. 117
شكل6-30: مقایسه فرکانس فلاتر برحسب زاویه عقبگرد برای نسبتهای متفاوت λ و TR=0.. 117
شكل6-31: مقایسه سرعت فلاتر برحسب زاویه عقبگرد برای نسبتهای متفاوت λ و TR=0.8.. 118
شكل6-32: مقایسه فرکانس فلاتر برحسب زاویه عقبگرد برای نسبتهای متفاوت λ و TR=0.8.. 118
شكل6-33: مقایسه سرعت فلاتر برحسب نسبت مخروطی برای نسبتهای متفاوت λ و Λ=0.. 119
شكل6-34: مقایسه سرعت فلاتر برحسب نسبت مخروطی برای نسبتهای متفاوت λ و Λ=45.. 119
شكل6-35: بال طراحی شده در نرم افزار CATIA… 120
شكل6-36: سیستمهای مختصات و سطح مقطع بال دارای شکستگی.. 121
شكل6-37: تغییرات ممان اینرسی و ممان اینرسی قطبی نسبت به فاصله از ریشه بال.. 122
شكل6-38: تغییرات سرعت فلاتر نسبت به زاویه عقبگرد برای ارتفاعهای پروازی متفاوت.. 123
شکل6-39: تغییرات سرعت فلاتر نسبت به افزایش ارتفاع به ازای زوایای عقبگرد متفاوت.. 124
شکل6-40: تغییرات سرعت فلاتر نسبت به ? به ازای زاویه عقبگرد23.4 =Λ… 124
فهرست جدولها
جدول2-1: کاربرد مواد مرکب در هواپیماهای پیشرفته. 26
جدول 2-2: فواید و معایب استفاده از مواد مرکب… 27
جدول3-1: متوسط ضریب بار انواع هواپیما 32
جدول4-1: نوع حرکت و مشخصههای پایداری برای مقادیر مختلف و ….. 70
جدول5-1: مشخصات بال طراحی شده. 84
جدول5-3: خصوصیات المانهای به کار برده شده Abaqus. 88
جدول5-4: خواص مکانیکی آلومینیوم. 89
جدول6-1: بیشترین جابجایی برای حالت1.. 95
جدول6-2: بیشترین جابجایی برای حالت2.. 95
جدول6-3: مقایسه ماکزیمم جابجایی عمودی و تنش در المانهای جامد و پوستهای.. 96
جدول 6-4: حالتهای مختلف استفاده از مخازن سوخت… 108
جدول6-5: فرکانسهای طبیعی بال طراحی شده توسط تحلیل اجزای محدود. 110
جدول 6-6: مقایسه سرعت و فركانس فلاتر برای یک بال یکنواخت… 113
جدول6-7: مشخصات بال طراحی شده. 120
جدول6-8: سرعت و فرکانس فلاتر بال دارای شکستگی.. 122
جدول6-9: سرعت و فرکانس فلاتر نسبت به تغییرات λدر ارتفاع 5182 متر. 125
جدول6-10: سرعت و فرکانس فلاتر نسبت به تغییرات λدر ارتفاع 10058 متر. 125
پیشگفتار
مدلسازی و تحلیل سازههای مختلف هواپیماهای امروزی، از مهمترین مسائل صنعت هواپیمایی میباشد. در اصول طراحی کلاسیک و مدرن، طراحی بال از اولین اقدامات در طراحی یک هواپیما به شمار میآید و این قسمت از هواپیما را معمولا قبل از بدنه، دم و دیگر اجزای هواپیما طراحی میکنند. با توجه به نقش اساسی بال در تولید نیروی برآ طراحی و تحلیل بال یکی از اساسیترین موضوعاتی است که یک طراح هواپیما با آن درگیر است. با توجه به اینکه سازه بال تحت مانورهای مختلف پروازی در معرض بارهای مختلف قرار میگیرد، در اجزای مختلف این سازه تنشهای مختلفی ایجاد میشود. برای این تحلیل، نرم افزارهای مختلفی که عملکرد آنها بر مبنای روش اجزاء محدود است، موجود میباشد.
1-2- تاریخچه
از ابتدای ابداع هواپیما باتوجه به نقش اساسی بال در ساختمان هواپیما و تولید نیروی برا مطالعات و تحقیقات فراوانی بر روی بال انجام گرفته است. عموما این تحقیقات را میتوان در زمینههای آیروالاستیسیته و بررسی پدیده فلاتر و واگرایی بال، بهینه سازی، تحلیل تنش استاتیکی و دینامیکی بال و تاثیر مواد مواد مرکب بر سایر پارامترهای طراحی بال نام برد.
فرم در حال بارگذاری ...
[شنبه 1400-05-16] [ 04:08:00 ب.ظ ]
|