تحلیل ارتعاشی یک ورق مرکب لایه لایه به کمک تئوری دومتغیره پالوده شده … |
پدیده تشدید در اجزای سازه و سیستمهای مکانیکی، عمر تجهیزات را کم میکند و حتی باعث شکست کامل و زودرس میگردد. تشدید، تحت تاثیر ویژگیهای جرم و سختی سازه میباشد. آنالیز مودال، مودهای ارتعاشی و فرکانسهای آن را بهدست میآورد. این روش برای سازههای ساده قابل استفاده است. اما وقتیکه سازه پیچیده میشود یا تحت بارگذاریهای پیچیده قرار میگیرد، از روش تحلیل المان محدود برای بهدست آوردن فرکانسهای طبیعی و مودهای سیستم استفاده میگردد.
1-1- تاریخچهای به روشهای حل مسایل ارتعاش آزاد ورقها
شروع مطالعه رفتار ارتعاشی ورقها به انتهای دهه 1800 باز میگردد، زمانی که ریلی روش معروف خود را برای بررسی ارتعاش آزاد سازهها ارایه داد. [3] پس از آن ریتز در سال 1909 روش ریلی را با در نظرگرفتن مجموعهای از تابعهای شکل آزمون بهبود بخشید، که هرکدام ضرایب دامنه مستقلی دارند. به این ترتیب روش ریلی-ریتز به یکی از روشهای تقریبی پرکاربرد در زمینه بررسی رفتار ارتعاش سازهها تبدیل شد. پس از آن، تحقیقات گستردهای در زمینه ارتعاش ورقهایی با شکلهای مختلف، شرایط مرزی و بارگذاری متفاوت صورت گرفت. بخش عمدهای از این مطالعهها به ورقهای نازک محدود میشود که در آن از اثر تغییر شکلهای برشی صرف نظر شده است. [8]
بر خلاف ورقهای نازک، اثر تغییر شکلهای برشی در ورقهای ضخیم قابل ملاحظه است. صرف نظرکردن از اثرهای برشی در این نوع ورقها ، منجر به افزایش قابل ملاحظه مقدار فرکانسهای ارتعاشی در جهت عدم اطمینان میشود. از این رو تئوریهای تغییر شکل برشی مرتبه اول[1] مانند تئوری ریزنر–میندلین و دیگر تئوریهای تغییر شکل برشی مرتبههای بالاتر[2] توسط محققین مختلف برای بررسی رفتار ارتعاش ورقها مورد استفاده قرار گرفته است.
میندلین و همکارانش، ارتعاش ورقهای مستطیلی ضخیم با شرایط مرزی چهار طرف مفصل و شرایط لوی را بررسی نمودند و حل تحلیلی آنها را ارایه دادند. آنها به این نتیجه رسیدند، که در ورق های چهار طرف مفصل سه دسته مود مستقل قابل حصول است. همچنین درهمکنش سایر مودها برای ورقی با یک جفت مرز آزاد و جفت دیگر مفصلی مورد مطالعه قرار گرفت.
خرید متن کامل این پایان نامه در سایت nefo.ir
نور [9] در سال 1973 به بررسی ارتعاش آزاد ورقهای مرکب لایهلایه پرداخت. وی نتیجههای حاصل از تئوری کلاسیک ورق لایهلایه[3]، تئوری میندلین و تئوری الاستیسیته سهبعدی را با یکدیگر مقایسه نمود وبه این نتیجه رسید، که تئوری کلاسیک ورق برای تخمین رفتار ارتعاش ورقهایی با درجه عمودسانگردی بالا و نسبت ضخامت به طول بیشتر از 1/0 مناسب نیست. این درحالیاست که نتایج تئوری میندلین، برای برآورد فرکانسهای ارتعاش پایین در ورقهای نسبتا ضخیم لایهلایهای با نسبت ضخامت به طول کمتر از2/0 رضایتبخش است.
میدان جابجایی و تنشهای عرضی، بهدلیل حفظ شرایط همسازی و تعادل از شرایط پیوستگی نوع در راستای ضخامت ورق برخوردارند. بر این اساس، تئوریهای مختلفی برای مسایل ورق و پوستهها توسط محققین ارایه شده است. از میان انبوه تئوریهای موجود، آن دسته از تئوریهایی که متغیرهای مجهول آنها از جنس جابجایی هستند، براساس چگونگی تعریف مولفههای میدان جابجایی و مدلسازی پیوستگی بین لایهها در دو گروه طبقهبندی میشوند.
الف) تئوری های لایه لایه ای
در این دسته از تئوریها، میدان جابجایی درهر لایه به صورت مستقل تعریف میشود. بنابراین در لایه ام خواهیم داشت:
در صورت اهمیت جزئیات رفتار هر یک از لایهها بهصورت جداگانه و یا احتمال بروز تغییرات شدید گرادیان مولفههای میدان جابجایی در بین لایهها، لزوم استفاده از تئوریهای لایهلایهای قابل توجیه است. اگرچه کاربرد آنها منجر به افزایش تعداد مجهولهای مساله و پیچیدگی بیشتر آن میگردد. تئوریهای لایهلایهای برخلاف تئوریهای تکلایه معادل، امکان ارضای پیوستگی تنشهای عرضی در مرز بین لایهها را فراهم میسازد. این تئوریها به دو دسته عمده تقسیم می شوند:
1) تئوریهای لایهلایهای جزیی[1]
دراین تئوریها توزیع لایهای تنها برای مولفههای درون-صفحهای میدان جابجایی در نظر گرفته میشود.
2) تئوریهای لایهلایهای کامل[2]
که در آن هر سه مولفه جابجایی در هر لایه به صورت جداگانه تعریف میشوند.
[1] Partial layer wise theories
[2] Full layer wise theories
[1] First-order shear deformation theory
[2] Higher-order shear deformation theory
فرم در حال بارگذاری ...
[جمعه 1400-05-15] [ 06:10:00 ب.ظ ]
|